ОГНЕ- И БИОЗАЩИТА ДРЕВЕСИНЫ
Древесина исторических зданий и сооружений в большей или меньшей степени поражена комплексом биоразрушителей, способствующих ее разрушению. Сильно страдают сооружения из дерева и от пожаров.
Обычно для зданий и сооружений из дерева мероприятия по био-и огнезащите проводят одновременно. При этом если борьба с биоразрушителями и возможностью пожаров в новых или новодельных зданиях осуществляется достаточно просто, то предотвращение возгораний и приостановление развития биоразрушителей в зданиях из частично разрушенной древесины, особенно при условии их музеефикации, — сложная задача, поскольку требуется обеспечить безопасность обслуживающего персонала и посетителей.
Введение в древесину защитных и укрепляющих средств может осуществляться с разборкой и без разборки сруба здания. При полной разборке зданий и сооружений появляется возможность тщательного осмотра всех бревен и деревянных деталей. Выявляются места полного разрушения древесины, наличие гнили и пустот, прикрытых внешним слоем здоровой на вид древесины. Все бревна, пораженные грибами или бактериями, изъеденные личинками насекомых, маркируют и откладывают для последующего удаления участков разрушенной древесины и протезирования. Остальные бревна направляют на пропитку.
Бревна с выявленными участками разрушенной древесины подвергают механической обработке. Гнилую и трухлявую древесину удаляют из бревен стамесками, долотом, щетками я кистями. Древесную пыль можно удалить с помощью пылесоса. В вычищенное место вставляют протез-врубку, который должен быть подогнан таким образом, чтобы после его установки не требовалась механическая обработка. Места в которые устанавливать протез-врубку нецелесообразно, можно загюлнить массой, приготовляемой из древесных опилок и мочевиноформальдегидного или кремнийорганического связующего.
Все способы глубинной пропитки древесины длительны. Пропитку бревен и деревянных конструкций полностью разобранного здания можно проводить в ваннах или в автоклавах. Наиболее удобными являются ванны из разрезанных вдоль стальных труб диаметром 1,3—1,5 м с приваренными днищами. В этом случае легко осуществляется слив отработанного раствора, для чего к нижней части ванны приваривается патрубок с краном. Дня защиты от коррозии внутренние поверхности ванцы покрывают лаком КО-921 или органосиликатным материалом ВН-30 с отвердителем - тетрабутоксититанатом (2 %), АГМ-3 (1 %) или силазаном МСН-7 (20%).
При обработке зданий без разборки применяется метод прерывистого орошения. Бревна пропитывают в радиальном направлении путем нанесения раствора до насыщения и дают выдержку, в течение которой происходит диффузия раствора не только в глубь массива древесины, но и в ее структурные элементы — полости и стенки клеток. Затем следует повторное нанесение раствора, выдержка и еще 2—3 цикла. Особенно тщательно необходимо обработать торцы бревен. Их обрабатывают в каждом цикле до полного пропитывания древесины консервантом. При условии высокой радиальной трещиноватости старых бревен пропитка практически всего объема бревна при таком методе обработки достигается за 2—3 недели.
При устойчивой и сухой погоде через 10—15 сут после обработки водными огне- и биозащитными растворами сруб в основном просыхает, и можно приступить к следующей операции — гидрофобизирующему укреплению растворами полимеров.
Наиболее распространены огнезащитные составы на основе фосфата и сульфата аммония. Хорошим огнезащитным действием обладают соединения бора — бура (тетраборат натрия), борная кислота и их смеси. Необходимо учитывать, что при изменении соотношения бура : бсушая кислота меняются растворимость смеси и свойства раствора. Оптимальное соотношение бура : борная кислота = 1,54:1. В этом случае в растворе образуется сильнорастворимый пентаборат натрия и растворимость смеси при 20 °С достигает 30%. Ниже приведены рецептуры огнезащитных растворов на основе буры и борной кислоты, которые проявляют также хорошее антисептическое действие, ч. (масс.):
I | II | III | |
Гидрофосфат аммония (NH4)2HPO4 | 6 | — | — |
Сульфат аммония (NH4)2SO4 | 14 | — | 17,5 |
Гидрофосфат натрия Na2HPO4
|
— | — | 2,5 |
Бура Na2R4O7 • 10H2O
|
— | 10 | — |
Борная кислота Н3ВО3 | — | 10 | — |
Фторид натрия NaF
|
1.5 | — | 1,5 |
Вода
|
78,5 | 80 | 78,5 |
Антипирены на основе соединений бора применяют в комбинации с хром-медными антисептиками, причем капиллярная и диффузионная проникающая способность антипиренов выше, чем у антисептиков, поэтому они проникают в более глубокие слои древесины и поэтому меньше подвержены вымыванию. Приведенные ниже составы на основе соединений бора, пентахлорфенолята натрия, хром- и медьсодержащих солей являются одновременно антипиренами и антисептиками, %:
|
I | II | III |
Борная кислота Н3ВО3
|
25-45 | 30-45 | 25-40 |
Бура Na2B4O7 • 10Н2О | 25-45 | — | 25-40 |
Пеитахлорфенолят натрия C6Cl5ONa | 10-50 | 8-40 | — |
Дихромат натрия Na2Cr3O7
|
— | — | 10-25 |
Сульфат меди (II) CuSO4
|
— | — | 10-25 |
Уксусная кислота СН3СООН | — | — | 0,2-1,0 |
Карбонат натрия Na2CO3
|
— | 30-45 | — |
В последнее время для огнезащиты деревянных зданий и сооружений, особенно в сочетании с водорастворимыми антисептиками (бура, борная кислота, хром-медные препараты и т.д.) , успешно применяется фосфат мочевины, вытесняющий из реставрационной практики растворы гидрофосфата аммония с сульфатом аммония. Путем конденсации мочевины с ортофосфорной кислотой получают водорастворимый препарат КМ, введение 10—15% которого предохраняет древесину от возгорания при воздействии открытого огня.
На основе фосфата мочевины создаются эффективные комплексные составы, например, г/л:
Фосфат мочевины — 100
Бромид аммония — 50
Гексаметилентетрамин — 10-15
Для глубинной и поверхностной защиты древесины от воздействия огня и биоразрушителей синтезированы соединения на основе мочевины или меламина и дициандиамина, формальдегида и фосфорной кислоты.
Значительное повышение биостойкости и снижение возгораемости Древесины достигается при пропитке ее 15 %-м водным раствором тетрафторбората аммония. Раствор способен полностью проникать через заболонь и на 1,5—2,0 мм в ядровую древесину. Последующая обработка пропитанной древесины в горячем (20°С) петролатуме делает ее стойкой в условиях переменной влажности при сохранении био- и огнезащитных свойств.
Многие антисептики и антипирены хорошо растворяются в воде, и поэтому легко вымываются из древесины. Наиболее устойчивым к вымыванию является хром-медный антисептик ХМ-32, содержащий 3 ч. (масс.) дихромата щелочного металла и 2 ч. (масс.) сульфата меди Ниже приведены составы хром-медных антисептиков, %:
ХМ-32 | ХМХЦ | ХМА | ХМФ | ХМК | |
Дихромат натрия | 60 | 20 | 20 | 50 | 50 |
Сульфат меди | 40 | 10 | 10 | 30 | 40 |
Хлорид цинка | — | 70 | — | — | — |
Кремнефторид аммония | — | — | 70 | — | — |
Фторид натрия | — | — | — | 20 | — |
Кремнефторид натрия | — | — | — | — | 10 |
Большая группа антисептиков содержит соли хрома, меди, мышьяка, цинка, которые образуют в древесине соединения, высокотоксичные для грибов и насекомых, но нерастворимые в воде и поэтому практически безопасные для теплокровных животных. Ниже указаны составы таких антисептиков, %:
Эрлит | Болиден | Хемонит | Лахотухо | Аску | Селькур | Таналит | |
Дихромат натрия | 28 | 16,5 | — | — | 55,5 | 47,5 | 37,5 |
Сульфат меди | 28 | — | 41 | 10 | 33,3 | 50 | — |
Сульфат цинка | — | 43,0 | — | 10 | — | — | — |
Оксид мышьяка (V) | — | 39,5 | 15,4 | 50 | 11.2 | — | 25 |
Едкий натр | — | — | 12,8 | — | — | — | — |
Гидроксид аммония | 24 | — | 30,8 | — | — | — | — |
Хромовый ангидрид | — | — | — | 30 | — | 1,68 | _ |
Фторид натрия | — | — | — | — | — | — | 25 |
Динитрофенол, смесь изомеров | — | — | — | — | — | — | 12,5 |
Борфторид аммония | 20 | — | — | — | — | — | — |
Комплексная защита древесины может быть осуществлена обработкой либо последовательно растворами антисептиков и антипиренов, а затем укрепляющими растворами полимеров, либо раствором, содержащим все необходимые компоненты. Применение находят комплексные защитные и укрепляющие составы для древесины, растворимые как в воде, так и в органических растворителях. Предложен следующий водорастворимый пропиточный состав, %:
Фенолоспирты — 80-90
Борная кислота — 2—4
Боротран (триэтаноламиноборат) — 1—2
Древесину пропитывают водным раствором этого состава и высушивают. Затем проводят полимеризацию фенолоспиртов в древесине нагреванием при 105—120 °С. В результате такой обработки у древесины повышается влаго- и водостойкость, механическая прочность, стойкость к грибным поражениям и воздействию огня.
Повышение биостойкости и снижение возгораемости древесины достигается при пропитке ее 15 %-м водным раствором тетрафторбората аммония по способу «прогрев - холодная ванна», при этом температуpa горячего раствора 91—95 °С, холодного 21—25 °С. Глубина проникновения раствора в ядровую древесину сосны при выдержке в каждой ванне в течение 1 ч составляет 1,5—2 мм. Влажную древесину переносят в ванну с петролатумом, нагретым до 120°С, и выдерживают для просущки при этой температуре 40 мин, заменяют петролатум на сухой с температурой 85 °С и выдерживают древесину еще 1 ч. После такой обработки древесина становится огне- и биостойкой и не меняет размеры при изменении влажности.
Последовательная пропитка древесины продуктом конденсации фосфорной кислоты с мочевиной (препарат КМ) и КОС дает синергический эффект огнезащиты. Применение в качестве антипирена смеси буры с борной кислотой и введение в КМ борфторидов придают системе биозащитные функции, а использование в качестве КОС силазанов (МСН-7) или их смесей с силоксанами (КО-921, К-9) позволяет улучшить физико-механические характеристики частично разрушенной древесины.
Карбамидные и карбамидно-фурановые смолы также проявляют значительное огнезащитное действие. При пропитке ими древесины с последующим термокаталитическим отверждением благодаря взаимодействию полимера с компонентами древесины образуются трудногорючие материалы и существенно повышаются физико-механические показатели модифицированной древесины. Наилучшие результаты дает карбамидно-фурановая смола, которая представляет собой продукт поликонденсации мочевины, формальдегида и фурфурилового спирта.
Комплексную защиту древесины обеспечивают также пропиточные составы на основе перхлорвиниловых олигомеров, галогенсодержащих эфиров фосфорной и борной кислот в сочетании с полимерами акрилового ряда и КОС.